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Abstract. A model of noise reduction for signal processing and other optimization tasks is
introduced. Each noise source puts a symmetric constraint on the space of the signal vector within
a tolerance bound. When the number of noise sources increases, sequences of transitions take
place, causing the solution space to vanish. We find that the transition from an extended solution
space to a shrunk space is retarded because of the symmetry of the constraints, in contrast with the
analogous problem of pattern storage. For low tolerance, the solution space vanishes by volume
reduction, whereas for high tolerance, the vanishing becomes more and more like percolation.

During the past few years, the statistical mechanics of disordered systems has been frequently
applied to understanding the macroscopic behaviour of many technologically useful problems,
such as optimization (e.g. graph partitioning and travelling salesman) [1], learning in neural
networks [2], error correcting codes [3],K-satisfiability [4] and the number partitioning
problem [5]. A focus of this approach is the phase transitions in such systems, e.g. the glassy
transition in optimization when the noise temperature of the simulated annealing process
is reduced, the storage capacity in neural networks and the entropic transition in theK-
satisfiability and number partitioning problem. Understanding these transitions is relevant
to the design and algorithmic issues in their applications [6]. In turn, since the behaviour may
be distinct from conventional disordered systems, the perspectives of statistical mechanics are
widened.

In this paper we consider the phase transitions in an optimization problem, which is
applicable to noise reduction (NR) techniques in signal processing, and other tasks. They have
been used in a number of applications such as adaptive noise cancellation, echo cancellation,
adaptive beamforming and more recently, blind separation of signals [7, 8]. While the
formulation of the problem depends on the context, the following model is typical. There
areN detectors picking up signals mixed with noise fromp noise sources. The input from
detectorj isxj = ajS+

∑
µ ξ

µ

j nµ, whereS is the signal,nµ forµ = 1, . . . , p is the noise from
theµth noise source, andnµ � S. Theaj andξµj are the contributions of the signal and theµth
noise source to detectorj . NR involves finding a linear combination of the inputs so that the
noises are minimized while the signal is kept detectable. Thus, we search for anN -dimensional
vectorJj such that the quantities

∑
j ξ

µ

j Jj are minimized, while
∑

j ajJj remains a non-zero
constant. To consider solutions with comparable power, we add the constraint

∑
j J

2
j = N .
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While adaptive algorithms for this objective exist [7], here we are interested in whether the
noise can be intrinsically kept below a tolerance level after the steady state is reached, provided
a converging algorithm is available.

When bothp andN are large, we use a formulation with normalized parameters. Lethµ be
the local fields for theµth source defined byhµ ≡∑j ξ

µ

j Jj /
√
N . Learning involves finding

a vectorJj such that the following conditions are fulfilled. (a)|hµ| < k for all µ = 1, . . . , p,
wherek is the tolerance bound. We assume that the vectorsξ

µ

j are randomly distributed,
with 〈〈ξµj 〉〉 = 0, and〈〈ξµi ξ νj 〉〉 = δij δµν . Hence, they introduce symmetric constraints to

the solution space. (b) The normalization condition
∑

j J
2
j = N . (c) |∑j ajJj /

√
N | = 1;

however, this condition is easily satisfied: if there exists a solution satisfying (a) and (b) but
yields|∑j ajJj /

√
N | different from 1, it is possible to make an adjustment of each component

Jj proportional to sgnaj/
√
N . Since the noise componentsξµj are uncorrelated withaj , the

local fields make a corresponding adjustment of the order 1/
√
N , which vanishes in the large-

N limit. The space of the vectorsJj satisfying the constraints (a) and (b) is referred to as the
version space.

NR is a prototype for a wider class of important problems such as load balancing in
computer networks, traffic regulation and production management. A server, such as a
computer server, a traffic junction or a factory, receives input quantitiesλj from sourcej
(=1, . . . , N), which may be computer jobs, traffic flow or raw materials respectively. Inputλj
is distributed by the server to outputsµ (=1, . . . , p) with given probabilitiesp(µ|j), and the
load received by outputµ is

∑
j λjp(µ|j). The optimization task is to determine the inputs

λj , so that the load forwarded to each output only deviates from the average within a tolerance.
Lettingλj = 〈λj 〉 + Jj andp(µ|j) = p−1 + ξµj , and normalizingJj , we obtain constraints (a)
and (b).

Although very similar to the problem of pattern storage in the perceptron with continuous
couplings where the constraints (a) arehµ > k [9], the NR model has an extra inversion
symmetry: the version space is invariant underEJ → − EJ . The NR model is also a simplified
version of the perceptron with multi-state output [10], in which the values of local fields for
each pattern are bounded in one of the few possible intervals, and here we only have a single
symmetric interval [−k, k]. Although they share the common feature that the version space is
not connected or not convex, the extra symmetry will lead to very different phase behaviour
from other perceptron models with, e.g., errors [11], discrete [12] or pruned couplings [13],
or non-monotonic transfer functions [14].

When the number of noise sources increases, the version space is reduced and undergoes
a sequence of phase transitions, causing it to disappear eventually. These transitions are
observed by monitoring the evolution of the overlap order parameterq, which is the typical
overlap between two vectors in the version space. For few noise sources, the version space is
extended andq = 0. When the number of noise sourcesp increases, the number of constraints
increases and the version space shrinks.

One possible scenario is that each constraint reduces the volume of the version space, and
there is a continuous transition to a phase of non-zero value ofq. Alternatively, each constraint
introduces a volume reduction resembling a percolation process, in which the version space
remains extended until a sufficient number of constraints have been introduced, and the version
space is suddenly reduced to a localized cluster. This may result in a discontinuous transition
from zero to non-zeroq. We expect that the transition takes place whenp is of the orderN ,
and we defineα ≡ p/N as the noise population. Whenα increases further,q reaches its
maximum value of 1 atα = αc, which is called thecritical population. The purpose of this
paper is to study the nature and conditions of occurrence of these transitions.
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We calculate the entropy (i.e. the self-averaging logarithm of the volume of the version
space). Averaging over the noise sources using the replica method [9],S = limn→0(〈〈Vn〉〉 −
1)/n, where

〈〈Vn〉〉 =
〈〈 n∏

a=1

∫ N∏
j=1

dJ aj δ

( N∑
j=1

J a2
j −N

) p∏
µ=1

θ(k2 − hµa 2
)

〉〉
(1)

with hµa ≡
∑

j J
a
j ξ

µ

j /
√
N . The result is〈〈Vn〉〉 = ∫ ∏n

a<b=1 dqab exp(Ng). The overlaps

between the coupling vectors of distinct replicasa andb: qab ≡
∑N

j=1J
a
j J

b
j /N , are determined

from the stationarity conditions ofg.
Due to the inversion symmetry of the constraints, it always has the all-zero solution

(qab = 0, ∀a < b), but it becomes locally unstable at a noise population

αAT(k) = π

2

erf(k/
√

2)2

k2 exp(−k2)
. (2)

Forα > αAT, the simplest solution assumesqab = q > 0. This replica symmetric (RS)
solution, however, is not stable against replica symmetry breaking (RSB) fluctuations for any
q > 0. Hence, (2) is an Almeida–Thouless (AT) line [1], and RSB solutions in the Parisi
scheme [1] have to be considered.

The transition ofq from zero to non-zero is absent in the problem of pattern storage in
the perceptron, whereq increases smoothly from zero when the storage levelα increases [9].
Rather, the situation is reminiscent of the spin glass transition in the Sherrington–Kirkpatrick
(SK) model, which does possess an inversion symmetry [1]. The phase diagram is now
discussed in the following three schemes (technical details will be published elsewhere).

(1) The RS solution (RS, superscript(0)) is given byq = qEA, whereqEA is the Edwards–
Anderson order parameter [1]. Close to the AT line,q ∼ t , wheret ≡ (α − αAT)/αAT � 1.
The critical population (q → 1) is

α(0)c (k) =
(
(1 + k2)

(
1− erf

(
k√
2

))
−
√

2

π
k exp

(−k2

2

))−1

. (3)

Two features are noted in the phase diagram in figure 1:

(a) The critical population line crosses the AT line. Whenk = 0, the version space is
equivalent to the solution ofp homogeneousN -dimensional linear equations. Hence it
vanishes atp = N , or α(0)c = 1. For smallk, αAT(k) increases from 1 quadratically, and
is therefore less thanα(0)c (k), which increases from 1 linearly. Thusq increases smoothly
from 0 atαAT to 1 atα(0)c . However, in the large-k limit, αAT(k) grows exponentially with
k2, whereasα(0)c (k) grows exponentially withk2/2 only, and the reverse is true.

(b) The first-order transition line takes over the AT line. The paradox in (a) is resolved by
noting that for a givenk, multiple RS solutions ofq may coexist for a givenα. Indeed,
α(0)(k, q) is monotonic inq for k 6 k(0)c = 2.89, and not so otherwise. Among the
coexisting stable RS solutions fork > k(0)c , the one with the lowest entropy is relevant.
Hence, there is a first-order transition inq at a valueα(0)1 (k), determined by the vanishing
of the entropy difference between the coexisting stable solutions. The jump inq across
the transition widens from 0 atk = k(0)c , and whenk increases abovek(0)0 = 3.11, q
jumps directly from zero to non-zero at the transition point. The line ofα

(0)
1 (k) starts

from k = k(0)c ; it crosses the line ofαAT(k) at k(0)0 , replacing it to become the physically
observable phase transition line. In the limit of largek, the first-order transition line is
given byα(0)1 (k) = 0.94α(0)c (k), whereq jumps from 0 to a high value of 1− 0.27k−2.
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Figure 1. Comparison ofα(0)c , α(1)c andαAT. Inset: the picture within RS neark(0)c andk(0)0 , with
two areas: (I)q = 0 and (II)q > 0. Shaded area: multiple solutions ofq.

These observations illustrate the nature of the phase transitions. For low tolerancek, each
constraint results in a significant reduction in the version space, and there is a continuous
transition to a phase of non-zero value ofq. For high tolerancek, each constraint introduces
a volume reduction which is less significant, resembling a percolation process, in which the
transition ofq from zero to non-zero is discontinuous. This picture is refined in the next
approximation.

(2) In the first step RSB approximation (RSB1, superscript(1)) then replicas are organized
into clusters ofm replicas.qab = q1 for replicas in the same cluster, andqab = q0 otherwise,
and in the limitn→ 0, 0< m < 1 for analytic continuation.

Two (q1, q0, m) solutions exist just above the AT line: one withq0 = 0 and one with
q0 > 0 (see figure 3). Only the latter is stable with respect to fluctuations ofq0.

The features in the phase diagram in figure 2 are as follows.

(a) First-order transition: Fork > k(1)c = 2.31 multiple solutions exist, and there is a first
order transition ofq atα(1)1 (k). This line starts fromk = k(1)c , and crosses the line ofαAT(k)

at k(1)0 = 2.61, to become the physically observable phase transition line. For largek,
q1 = 1− 1.23/(k ln k)2 at the transition, andα(1)1 (k) = (1− 0.33/ ln k)α(1)c (k). Hence,
the system first undergoes a percolation transition, in which the occurence of localized
clusters is indicated by the discontinuous transition from zero to non-zeroq1.

(b) Reduced critical populationcompared withα(0)c (k). In the large-k limit, α(1)c (k)/α
(0)
c (k) '

2 lnk/k2.
(c) Transition ofq0. The regime of non-zeroq1 andq0 spans the region of lowk below the

critical population. At intermediate values ofk, however, there is a lineα(1)m whereq0

becomes zero. The line starts fromk(1)c,m = 2.37 on the line of critical population, and ends

at k = k(1)0 = 2.61 on the line of first-order transition. Beyond this line in the localized
phase, only the solution withq0 = 0 exists, reflecting the fact that the distribution of
clusters remains extended and isotropic.

The formation of localized clusters at the percolation transition is illustrated by the
evolution of the overlap distribution. Fork > k

(1)
0 at the first-order transition line, the

parameterm decreases smoothly, with increasingα, from 1 across the phase transition line.
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Figure 2. The picture within RSB1, with the three areas:
(I) q0 = q1 = 0, (II) 0 < q0 < q1 < 1 and (III) 0< q1 < 1,
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Figure 3. The RSB∞ solution near the AT line (a).
For comparison, the RSB1 solution ((b): non-zero
q0, (c): zeroq0) and the RS solution (d) are also
plotted.

This is analogous to the RS–RSB1 transition in the random energy model [1,15] and the high-
temperature perceptron [16]. Since the overlap distribution isP(q) = mδ(q − q0) + (1−
m)δ(q − q1), the transition is continuous in the overlap distribution, although discontinuous
in terms ofq1. At the transition, the statistical weight of theq = q0 = 0 component decreases
smoothly, while that of theq = q1 component increases from zero. Two points in the version
space have a high probability to share an overlapq0, meaning that they belong to different
clusters. Hence, the version space consists of many small clusters, which are isotropically
distributed, sinceq0 = 0. Whenα increases,m decreases towards 0, and the version space is
mainly reduced by weeding out clusters.

In contrast, for the transition at lowk, the overlap has the same form as the SK model, i.e.
a high probability beingq1, implying that it consists of few large clusters.

(3) In the infinite step RSB solution (RSB∞, superscript(∞)) then replicas are organized
into hierarchies of clustersmi . In the Parisi scheme [1], the overlapqab is represented by the
Parisi functionq(x), wherex is the cumulative frequency ofq, or P(q) = dx(q)/dq. We
have only obtained solutions forα just aboveαAT. As shown in figure 3,q(x) grows linearly
from x = 0 tox = m(∞) and remains constant atqEA ∼ t until x = 1. It is very similar to the
Parisi function of the SK model without external field near the critical temperature [1].

For the RSB∞ solution far away from the AT line, we only give some qualitative features
of the phase behaviour. Below the AT line we have the extended phase characterized by
q(x) = 0. For smallk, αAT(k) is less thanα(∞)c (k). Hence forα increasing aboveαAT, there
is a continuous transition ofq(x), andqEA → 1 for α→ α(∞)c (k).

For largek, αAT(k) is greater thanα(∞)c (k), sinceα(∞)c (k) 6 α(1)c (k) < α(0)c (k). Hence,
theα(∞)c (k) line must intersect the AT line, and there must exist a criticalk(∞)c above which
there is a first-order transition from a solution with low (or zero)qEA to one with highqEA

(denoted byα(∞)1 (k)). This line intersects theαAT(k) line at a valuek(∞)0 , replacing it to be the
physically observable phase transition line.

We expect the picture of version space percolation for largek also to be valid in the RSB∞
ansatz. Whenα increases aboveα(∞)1 (k), q(x)will deviate appreciably from the zero function
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only in a narrow range ofx near 1. Hence, the overlapq is zero with a probability almost equal
to 1, and non-zero with a probability much less than 1. The corresponding picture is that the
version space consists of hierarchies of localized clusters which are scattered in all directions
of anN -dimensional hypersphere. Again, the transition is continuous in terms of the overlap
distribution, though not so in terms ofq(x).

The phase transitions observed here have strong implications to the NR problem. In the
extended phase for low values ofα, an adaptive algorithm can find a solution easily in any
direction of theN -dimensional parameter space. In the localized phase, the solution can only
be found in certain directions. If the tolerancek is sufficiently high, there is a jump in the
overlap distribution, which means that the search direction is suddenly restricted on increasing
α. For very high tolerancek, the picture of percolation transition applies, so that even though
localized clusters of solutions are present in all directions, it is difficult to move continuously
from one cluster to another without violating the constraints.

The analysis of NR can be extended to perceptrons withmulti-stateandanalogueoutputs,
when there are sufficiently many intermediate outputs. The version space formed by the
intermediate states has the same geometry as the model studied here. To picture this, note that
for α > 1, the part of space delimited by the constraints (a), forms a random closed polytope
(box), constraint (b) is the surface of a hypersphere, and the version space is their intersection.
Hence for sufficiently largep, it consists of disconnected clusters, resulting in the occurence
of RSB [10, 17]. Percolation-like transitions are expected in the case of transfer functions of
low gain.

In conclusion, we have introduced a model for optimization problems which is simple,
calculable within the full Parisi RSB scheme and shows rich non-trivial behaviour. It can
serve as a prototype for a wide class of problems in disordered systems such as NR in signal
processing, traffic flow, load balancing, information storage in multi-state and analogue neural
networks. Moreover, it explains the possible phase transitions in the solution space for these
problems, where both volume reduction and percolation-like scenarios are possible. This is
an important consideration prior to the construction of any optimal optimization algorithms.

We thank R K̈uhn for informative discussions, M Bouten, T Coolen, H Nishimori and P Ruján
for critical comments. This work is partially supported by the Research Grant Council of Hong
Kong (HKUST6130/97P), by the Research Fund of the K U Leuven (grant OT/94/9) and by
the EPSRC (GR/M11554).
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